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We present a theoretical study of a system with competing short-range ferromagnetic attraction and a
long-range antiferromagnetic repulsion, in the presence of a uniform external magnetic field. The interplay
between these interactions, at sufficiently low temperature, leads to the self-tuning of the magnetization to a
value which triggers phase coexistence, even in the presence of the external field. The investigation of this
phenomenon is performed using a Ginzburg-Landau functional in the limit of an infinite number of order
parameter components �large N model�. The scalar version of the model is expected to describe the phase
separation taking place on a cell surface when this is immersed in a uniform concentration of chemical
stimulant. A phase diagram is obtained as a function of the external field and the intensity of the long-range
repulsion. The time evolution of the order parameter and of the structure factor in a relaxation process is
studied in different regions of the phase diagram.
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I. INTRODUCTION

Several natural and social processes are governed by com-
peting interactions. Often the interplay between opposite ac-
tions produces ordered phases and symmetry breaking
events. For example, models based on competing interac-
tions are able to explain lamellar phases in charged colloids
�1�, pattern formation in magnetic films, Languimir mono-
layers and liquid crystals �2�, and some market behaviors �3�.
In living organisms there is an important example of these
processes: the spatial orientation of eukaryotic cells �4�
called eukaryotic directional sensing. Many eukaryotic cells
are able to orient �polarize� for moving along directions after
an external stimulation. This process is fundamental for im-
portant biological functions such as morphogenesis of organs
and tissues, wound healing, immune response, and social be-
haviors of some amoeboid cells. The process of orientation
takes place on the cell membrane where the pattern forma-
tion of domains of two different enzymes determines a sym-
metry breaking which triggers the directional sensing �5�.
Pattern formation occurs as a response to an external stimu-
lation, usually a chemical signal activating specific receptors
on the cell surface, enhanced by a cascade of chemical reac-
tions leading to the cell polarization �see Ref. �6� and refer-
ences therein�. Experimental observations �7� suggest that
the domain formation is a consequence of self-organization
of molecular patches.

Let us briefly summarize the biological mechanism of di-
rectional sensing. It can be explained in terms of the inter-
play between two enzymes: PTEN �phosphatase and tesin
homolog� and PI3K �phosphatidylinotisol 3-kinase�. This in-
terplay is mediated by two lipids: the PIP2 �phosphatidylino-
tisol bisphosphate� and the PIP3 �phosphatidylinotisol tris-

phosphate�. Before stimulation, the cell membrane is
populated only by the PTEN enzyme with its product PIP2
but, when the external chemoattractant is switched on, the
enzyme PI3K goes from cytoplasm to the cell membrane and
binds to receptors. Then, the interplay between the two en-
zymes takes place: the PI3K catalyzes PIP2 in PIP3 and
PTEN catalyzes PIP3 in PIP2. The enzymes can bind to the
respective lipid products which diffuse over the membrane.
Enzymes can unbind from the membrane and quickly diffuse
in cytoplasm binding again in another place of the mem-
brane. Catalysis and lipid diffusion mediate an effective
short-range attraction between enzymes of the same type.
The quick diffusion of enzymes in the cytoplasm mediates a
long-range interaction. The combination of these actions pro-
duces the phase separation of a PI3K rich zone and a PTEN
rich zone.

The natural framework to treat the process, from a physi-
cal point of view, is the statistical physics of phase separa-
tion, which is useful to understand and describe in a syn-
thetic way the behavior of many complex systems that give
rise to organization and pattern formation �8,9�. The spatial
organization phenomena described above have the character-
istics of self-organized phase separation processes, where the
cell state, driven by an external field, decays into the coex-
istence of two chemical phases, spatially localized in differ-
ent regions. It was shown recently, by Monte Carlo simula-
tion in a lattice-gas model �10�, that the phenomenology of
directional sensing can be obtained by using an effective free
energy. A similar point of view was used in the recent papers
of Gamba et al. �11,12�. The remarkable physical character-
istic of the process is that the orientation is possible for a
wide range of external chemical attractant �13�. Namely, the
phase coexistence and separation are possible for different
values of an external field. In the lattice-gas model �10�, a
long-range repulsion, derived from the interaction with a fi-
nite cytosolic reservoir of total enzymes and the interaction*ferraro@na.infn.it
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with an external field, modeling the action of the chemical
attractant, give rise to coexistence for an interval of values of
the external field. A short-range attraction between enzymes,
derived from their catalytic actions on lipids and diffusion,
gives rise to a coarsening process which produces phase
separation. A similar mechanism operates in some econo-
physics models �3� based on two major conflicting interac-
tions in economy, the tendency of a trader to follow the
actions of his neighbors and the tendency to follow the ac-
tions of the minority. In the language of magnetic systems,
which we will use throughout this paper, the first tendency
can be modeled by a short-range ferromagnetic interaction,
while the second one by an antiferromagnetic long-range in-
teraction.

Inspired by the mechanism of eukaryotic directional sens-
ing and motivated by its wide applicability, here we present
the analytical treatment of a system with competing short-
range attraction and long-range repulsion, under the action of
a uniform external field. This is done in the framework of the
time-dependent Ginzburg-Landau �TDGL� theory for the
evolution of the order parameter. The analytical tractability
of the dynamics is achieved considering a vector order pa-
rameter in the limit of an infinite number of components
�large N limit� �14�. The equations of motion are derived in
the scheme of the nonconserved order parameter, corre-
sponding to the absence of local concentration of enzymes.

The large N limit is a powerful method to obtain analyti-
cal results, nevertheless it is necessary to keep in mind some
important differences with the nonlinear models usually em-
ployed in the description of phase ordering when the order
parameter is a scalar, such as kinetic Ising models or the
TDGL with �4 interaction �15�. The basic difference is in the
mechanism of equilibration after a symmetric quench below
the critical point. In the nonlinear models the system re-
sponds to the dynamical instability by the formation and
growth, through coarsening, of domains of the ordered
phases. This leads to the development of a bimodal probabil-
ity distribution for the local magnetization, which eventually
ought to evolve into the symmetric mixture of the two pos-
sible broken symmetry ordered phases �16�. This we call an
ordering process. In the large N limit, instead, the develop-
ment of a bimodal distribution, and therefore ordering, is not
possible, since, as it will be clear below, the system is effec-
tively linearized and the statistics are Gaussian. Then, the
response to the dynamical instability takes place through the
development of macroscopic fluctuations in the most un-
stable Fourier component of the order parameter, through a
process which is formally identical to the one leading to the
formation of the condensate in the low temperature phase of
the ideal Bose gas. We refer to this equilibration mechanism
as condensation of fluctuations. The differences between the
two equilibration processes have been investigated in detail
in Refs. �17,18�.

The remarkable feature of the large N limit, and the rea-
son for its wide use, is that despite the considerable differ-
ence in the physical processes of equilibration, the phenom-
enology of the observables of interest, such as correlation
functions and response functions, is the same as in the non-
linear models, apart for obvious quantitative discrepancies,
like the values of exponents or the shape of scaling func-

tions. The typical example is that of the equal time structure
factor, which displays dynamical scaling and the growth of
the Bragg peak in the large N limit �19�, exactly as in the
nonlinear models. It is, then, a matter of interpretation in one
case to read the growth of the Bragg peak as revealing do-
main coarsening and, in the other, condensation of fluctua-
tions. There is, by now, a vast body of literature documenting
the robustness of the large N limit in reproducing the phe-
nomenology of phase ordering in a large variety of models,
warranting to overlook the distinction between ordering and
condensation, as we shall do in this paper, when one is in-
terested in the main qualitative features of the process.

The paper is organized as follows. In Sec. II we carry out
the large N limit on the TDGL model for a vector order
parameter, deriving the basic equations. In Sec. III we study
the equilibrium properties of the system, obtaining the phase
diagram in the temperature and external field plane, param-
etrized by the strength of the long-range repulsion. This de-
limits the region of parameters where condensation or,
equivalently, phase coexistence and separation are possible.
Section IV is devoted to the study of the time behavior of the
average value of the order parameter �magnetization� and of
the correlation function. We recall that in the scalar case the
magnetization represents the concentration difference be-
tween the two species of enzymes. Concluding remarks are
presented in Sec V.

II. MODEL

The system is modeled by a free-energy functional of the
form

H��� � = �
V

dx��1

2
���� �2 +

r

2
��� · �� � +

g

4N
��� · �� �2

− H� �x�� · �� �x��� +
1

2

�

V��V

dx���	2

, �1�

where �� = ��1 , . . . ,�N� is an N component vector order pa-
rameter. We shall take r�0, g�0, H
O�N1/2�; V is the
volume of the system and ��0 is an antiferromagnetic cou-
pling. We shall consider the static and dynamic properties of
the model.

As is well known from the theory of critical phenomena,
the introduction of an N component order parameter is a very
convenient technical device to generate controlled and sys-
tematic correction about mean field behavior, using 1 /N as
an expansion parameter �20�. We shall limit the treatment to
the lowest �mean field� order by taking the large N limit
�N→��.

Equation of motion

In the framework of the TDGL model for the dynamics

��� �x�,t�
�t

= −
�H��� �

���
�x�,t� + �� �x�,t� , �2�

where �� �x� , t� is the white noise at temperature T, with zero
average and correlator
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��	�x�,t��
�x��,t��� = 2T�	
��x� − x�����t − t�� ,

the equation of motion of the order parameter is given by

��� �x�,t�
�t

= − �− �2�� �x�,t� + r�� �x�,t� +
g

N
��� · �� ��� �x�,t� − H� �x��	

−
�

V
�

V

dx��� �x�,t� + �� �x�,t� . �3�

Since the external field breaks the rotational symmetry in the
order parameter space, it is convenient to introduce the lon-

gitudinal and transverse components with respect to H� �x��,

�� = ��  + �� �, �4�

and then to split the longitudinal component into the sum

�� �x�,t� = M� �x�,t� + �� �x�,t� , �5�

where M� �x� , t�= ��� �x� , t�� is the magnetization, while the av-

erage longitudinal fluctuations vanish ��� �x� , t���0 by con-
struction. The angular brackets denote the average over both
the initial condition and the thermal noise. In the following
we shall take a reference frame with the 1-axis along the
longitudinal direction.

Assuming, next, M 
O�N1/2�, �
O�1� and comparing
terms of the same order of magnitude in N, to leading order
we get the pair of equations

�m

�t
= − �− �2 + r + gm2 + gS�m + �h −

�

V
�

V

dx�m� �6�

and

��� �

�t
= − ��− �2 + r + gm2 + gS��� � +

�

V
�

V

dx��� �	 + �� �,

�7�

where m�m�x , t� and h�h�x , t� are the following rescaled
quantities

m�x�,t� = M�x�,t�/N1/2, h�x�,t� = H�x�,t�/N1/2. �8�

In the large N limit the quantity S�x� , t� is given by the self-
averaged fluctuations

lim
N→�

1

N
��� � · �� �� = ��	�	� = S�x�,t� �9�

of the generic transverse component �	. Furthermore, since
in Eq. �7� the components of �� � are effectively decoupled,
from now on we shall refer to the equation for the generic
component omitting the 	 subscript.

Taking a space and time independent external field h and
space translation invariant initial conditions, we can assume
space translation invariance to hold at all times. Hence, Fou-
rier transforming with respect to space, and introducing the
equal-time transverse structure factor

���k�,t���k��,t�� = C��k�,t�V�k�+k��,0, �10�

we obtain the closed set of equations

�m�t�
�t

= − ��0,t�m�t� + h , �11�

�C��k�,t�
�t

= − 2��k,t�C��k�,t� + 2T , �12�

S�t� =
1

V
�

k�
C��k�,t� , �13�

with m�t��m�k� =0, t� and ��k , t� defined by

��k,t� = k2 + ��k,0 + r + g�m2 + S� �14�

and the noise correlator in Fourier space given by

���k�,t���k��,t��� = 2TV�k�+k��,0��t − t�� .

With periodic boundary conditions the wave vector runs over
k� = 2

L n� , where n� is a vector with integer components and
Ld=V. Furthermore, sums over k� like the one in Eq. �13� are
cutoff to the upper value kmax=�, where �−1 is related to a
characteristic microscopic length, for instance, the lattice
spacing of an underlying lattice. Finally, the longitudinal
fluctuations � have been dropped since they do not give any
contribution to leading order.

III. STATIC PROPERTIES AND PHASE DIAGRAM

If equilibrium is reached, all quantities become time inde-
pendent. Rewriting Eq. �14� as

��k� = �� + � for k = 0,

k2 + � for k � 0,
� �15�

with

� = r + g�m2 + S� �16�

and putting to zero the time derivatives, from Eqs. �11�–�13�
we obtain the set of equations

�� + ��m = h , �17�

��k�C��k�� = T , �18�

S =
1

V
�

k�
C��k�� . �19�

From Eqs. �10� and �18� follows C��k���0 and ��k��0,
respectively. The latter inequality, because of Eq. �15�, re-
quires

� � �min = − kmin
2 , �20�

where kmin
1 /L is the minimum allowed value of k�0.
Therefore, for a given � and for V sufficiently large, �+�
�0 and Eq. �17� can be rewritten as

m =
h

� + �
. �21�

In the same way, from Eq. �18� we can write
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C��k�� = �T/�� + �� for k = 0,

T/�k2 + �� for k � kmin,
� �22�

where C��k�min� diverges as � approaches �min. Notice that �
can be identified with the inverse square transverse correla-
tion length �−2.

In order to obtain the full solution, we must now deter-
mine how � depends on the parameters of the problem
�T ,h ,V ,��. In principle, this can be done by inserting the
above results into Eq. �16� and solving the basic self-
consistency equation

� − g� h

� + �
�2

= r +
g

V

T

� + �
+

Tg

V
�
k��0

1

k2 + �
. �23�

However, for our purposes general considerations are suffi-
cient, without actually solving the above equation. For V
sufficiently large the second term in the right-hand side can
be neglected and the equation can be rewritten in the form

� − g� h

� + �
�2

= r +
g

V

T

� − �min
+

Tg

V
�

k��k�min

1

k2 + �
,

�24�

where the kmin term has been extracted from underneath the
sum. Letting � to vary from �min to �, the left-hand side is a
monotonously increasing function of �, while the right-hand
side diverges at �min and decreases monotonously with in-
creasing �. Therefore, for any finite V, there exists a solution
���V���min. Looking at Eqs. �21� and �22�, this means that
the system behaves paramagnetically all over the �T ,h�
plane, with a finite structure factor. The difference with re-
spect to what one would have in the purely short-range
model, due to ��0, is revealed by anomaly �22� in the struc-
ture factor at k=0 and by the reduction in the magnetization
in Eq. �21�. Rewriting the latter as ���V�m=heff with

heff = h − �m , �25�

we see that the reduction in the magnetization comes about
through a feedback mechanism, whereby the external field h,
via the long-range interaction, is substituted by heff.

Let us now see what happens in the infinite volume limit.
From Eq. �20� follows �min→0− and there are two possibili-
ties

lim
V→�

���V� = ��� � 0,

�� = 0.
� �26�

In the first case, the second term in the right-hand side of Eq.
�24� can be neglected yielding

� − g� h

� + �
�2

= r + TgB��� , �27�

where

B��� = lim
V→�

1

V �
k��0

1

k2 + �
= Kd�

0

�

dk
kd−1

k2 + �
�28�

is a monotonously decreasing function of � with the maxi-
mum value

B�0� = �Kd
�d−2

d − 2
for d � 2,

divergent for d � 2,
� �29�

with Kd= �2d−1d/2��d /2��−1 being the d-dimensional solid
angle �21� and ��d /2� the Euler gamma function. Hence, Eq.
�27� admits a positive solution if T is greater than the
h-dependent critical temperature

TC�h� = −
r + gh2/�2

gB�0�
, �30�

which vanishes for d�2 and for any h, while it is finite for
d�2 reaching the maximum value TC�0�=−r /gB�0� for h
=0 and decreasing to zero when h reaches the limit values
�hC �see Fig. 1� with

hC = ��− r/g�1/2. �31�

Conversely, if T and h are such that T�TC�h�, Eq. �27�
cannot be satisfied. This means that the second of the two
possibilities in Eq. �26� applies, requiring to keep also the
second term in the right-hand side of Eq. �24�, which we
rewrite as

� − g� h

� + �
�2

= r +
g

V
C��k�min� + TgB��� . �32�

Since this is satisfied for �=0, we get

C��k�min� = V�−
r

g
− � h

�
�2	�TC�h� − T

TC�h� 	 �33�

showing that C��k�min�, for T�TC�h�, diverges like the vol-
ume in order to give a finite contribution in the right-hand
side of Eq. �32�.

Summarizing, in the infinite volume limit

m = �h/�� + ��� for T � TC�h� ,

h/� for T � TC�h� ,
� �34�

where ���0, and

�hc

�hc

Λ�1

Λ�0.5

Λ�0.25

0.5 1.0 1.5 2.0 2.5 3.0
T

�1.0

�0.5

0.5

1.0

h

FIG. 1. �Color online� Phase diagram showing the � dependence
of the region within which condensation of the transverse fluctua-
tion takes place. The presence of a condensate, in the blue regions,
corresponds to phase separation and coexistence in the correspond-
ing scalar model. In this and in all the other figures g=−r=1, �
=2, and d=3, yielding TC�0�=.
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C��k�� = �T/�k2 + ��� for T � TC�h� ,

T/k2 + M2�T���k� − 0+� for T � TC�h� ,�
�35�

showing that there is condensation of transverse fluctuation
at k=0+ for T�TC�h�, with the size of the condensate given
by

M2�T� = �−
r

g
− � h

�
�2	�TC�h� − T

TC�h� 	 . �36�

In order to understand this result, it should be recalled that
in the purely short-range large N model the phase transition
occurs only on the h=0 axis, where for T�TC�0� the con-
densation of fluctuations takes place �17� at k=0. Condensa-
tion of fluctuations means that C��k� =0� becomes macro-
scopic in order to equilibrate the system below TC�0� without
breaking the symmetry, through a mechanism very similar to
that of the Bose-Einstein condensation, as mentioned in Sec.
I. No other mechanism is available, since the large N limit
renders the system effectively Gaussian �17,18�. However,
condensation of fluctuations produces the onset of a Bragg
peak at k� =0 and, therefore, a phenomenology of the structure
factor which is indistinguishable from that due to the occur-
rence of phase separation in the nonlinear models �15�. When
h�0 the symmetry is broken and equilibrium can be estab-
lished at any temperature through the development of a non-
vanishing magnetization, without any condensation.

In the system with the long-range coupling of antiferro-
magnetic type everything remains the same along the h=0
axis, since the symmetry is unbroken, the magnetization is
zero, and the only effect of the � term is to shift the Bragg
peak from k� =0 to k� =0+. The novelty appears outside of the
h=0 axis, where the explicitly broken symmetry induces the
development of a nonvanishing magnetization which, how-
ever, through the feedback mechanism driven by the antifer-
romagnetic interaction produces the effective reduction �25�
of the external field. So, if for a given � the values of T and
h manage to make heff=0, at that point the value of the
magnetization gets stabilized to value �34� and the only way
to equilibrate the system is through the condensation of fluc-
tuations. The result is the phase diagram of Fig. 1, showing
the expansion of the phase coexistence region outside the h
=0 axis. The constant � curves delimit the regions on the
�T ,h� plane within which the system self-tunes the final
magnetization to the value h /� such that heff=0 triggering,
therefore, the condensation of the k� =0+ fluctuations.

IV. DYNAMICAL PROPERTIES

In order to investigate the dynamics, we have solved nu-
merically the coupled equations �11�–�13� in a discretized
three-dimensional Fourier space using the fourth-order
Runge-Kutta method with adaptive step size �22�. We have
used a mesh of linear size L=1000, taking �=1 and the
initial conditions m�0�=−1, C��k ,0�=0.

Let us first consider �T ,h� in the region of phase separa-
tion, with T�TC�h�. Figures 2 and 3 illustrate quite well the
considerations made at the end of the previous section. The

first one displays the evolution of the magnetization for dif-
ferent values of h. After a fast transient there is saturation to
the equilibrium value

meq =
h

�
�37�

taking place from above or from below for h positive or
negative, respectively. Apart from the details of the transient,
this behavior of the magnetization agrees with the prediction
and results of Ref. �10� for the scalar model.

As explained above, when the magnetization gets stabi-
lized at value �37� by heff=0, the growth of the Bragg peak is
inevitable in order to equilibrate the system. This is illus-
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FIG. 2. �Color online� Time evolution of the magnetization for
different values of h, �=1, and T=0.25TC�h�.
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FIG. 3. �Color online� Time evolution of the transverse structure
factor C��k , t� for h=0.5, �=1, and T=0.25TC�h�. Inset: time evo-
lution of the peak height C��kmin, t�.
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trated in Fig. 3. In the late time regime the structure factor is
expected to obey a scaling form of the type �15�

C��k,t� 
 Ld�t�F„kL�t�… , �38�

where F(kL�t�) is a scaling function and L�t�
 t1/z with z
=2, as appropriate for phase ordering processes without con-
servation of the order parameter, is a time-dependent charac-
teristic length �23�. The same growth law t1/2 was found in
Ref. �10� for the mean cluster size. The inset of Fig. 3 shows
that the height of the peak follows quite well the power law

C�kmin,t� 
 t3/2. �39�

Actually, for times of order 103–104 there appears a devia-
tion from the power law �39�. This is a finite-size effect,
unavoidable in the numerical computation and not to be con-
fused with the equilibration of the magnetization, which is
independent of the size of the system �notice the huge differ-
ence in the time scales�. Therefore, considering the infinite
system, we have the interesting instance of two observables
in the same system, one of which �the magnetization� equili-
brates rather quickly, while the other �the structure factor�
does not reach equilibrium in any time scale.

Conversely, if T�Tc�h� there is a solution of the self-
consistency relation without growth of the condensate and
both the magnetization and the structure factor reach equilib-
rium in the same time scale. This is illustrated in Fig. 4,
displaying the saturation of the magnetization to the limit
value meq= h

�+�� with ���0, in agreement with Eq. �34�,
while the inset shows the saturation of the peak height to the
equilibrium value

T/�kmin
2 + ��� �40�

in agreement with Eq. �35�.
The same qualitative behavior that we have here illus-

trated in the d=3 case is expected for any d�2. For d=2,
due to the divergence in the denominator of Eq. �30�, the
critical temperature vanishes, squeezing the coexistence re-
gion of Fig. 1 onto the vertical axis at T=0. Therefore, in the
d=2 case condensation of fluctuations can be obtained only
for T=0 and �h��hC.

V. SUMMARY

In this paper we have studied the static and dynamic prop-
erties of a system described by a free-energy functional with
a short-range ferromagnetic interaction and a long-range an-
tiferromagnetic interaction, in the presence of an external
uniform magnetic field. The analysis has been carried out in
the large N limit. The scalar counterpart of this model is the
lattice-gas Hamiltonian �10� used to model the phenomenol-
ogy of phase separation occurring in the inner part of cell
surface during directional sensing. We have focused on the
phase ordering process taking place below the critical tem-
perature, even in the presence of the external magnetic field.

In particular, through the equations of motion for the mag-
netization and the transverse structure factor, we have high-
lighted how the competing interactions induce the self-tuning
of the magnetization within the phase coexistence region. We
have derived the phase diagram, which depends on the mag-
netic field and the strength of the antiferromagnetic coupling,
showing that phase separation is possible for a range of val-
ues of the external field. Taking the large N limit it has been
possible to derive analytically the dependence of the critical
temperature on the magnetic field and on antiferromagnetic
coupling �. The phase diagram of Fig. 1 depicts in the �T ,h�
plane the phase coexistence regions for different values of �.
The equilibrium value of magnetization meq=h /� is in agree-
ment with the prediction and with the results obtained in the
Monte Carlo simulation for a lattice-gas system �Ref. �10��.
The dynamics shows that the antiferromagnetic coupling
combines with the magnetization to generate the effective
magnetic heff field, eventually vanishing within the coexist-
ence region. While the magnetization equilibrates very
quickly, the structure factor does not equilibrate on any time
scale.

For T�TC�h� the relaxation process is characterized by
the growth of a condensate in the transverse structure factor
at the most unstable wave vector k=kmin. The onset of con-
densation signals the occurrence of a phase separation and
corresponds to domain coarsening in the scalar case. The late
time behavior of the structure factor is characterized by dy-
namical scaling and power law growth of the peak, with the
exponent d /2 characteristic of the nonconserved order pa-
rameter.

In conclusion, we have analyzed a model where the com-
petition between the short-range ferromagnetic and the long-
range antiferromagnetic interaction between two species
leads to the phase separation for a wide range of external
field and temperature. The occurrence of phase separation is

T = 2 Tc h/λ= 0.5
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FIG. 4. �Color online� Behavior of magnetization outside the
coexistence region, with h=0.5, �=1, and T=2TC�h�. The dotted
line represents the equilibrium value of magnetization for T
�TC�h�. Inset: time evolution of C��kmin, t�.
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a crucial intermediate step allowing for the amplification of
external field gradients, leading to directional sensing as il-
lustrated in Ref. �10�.

The general property of the free-energy functional �1�,
giving rise to phase coexistence through self-tuning, can be
very useful in other contexts characterized by the balance

between short-range attraction, long-range repulsion, and an
overall external action.
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